(2x)^2+(3x)^2=64

Simple and best practice solution for (2x)^2+(3x)^2=64 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x)^2+(3x)^2=64 equation:



(2x)^2+(3x)^2=64
We move all terms to the left:
(2x)^2+(3x)^2-(64)=0
We add all the numbers together, and all the variables
5x^2-64=0
a = 5; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·5·(-64)
Δ = 1280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1280}=\sqrt{256*5}=\sqrt{256}*\sqrt{5}=16\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{5}}{2*5}=\frac{0-16\sqrt{5}}{10} =-\frac{16\sqrt{5}}{10} =-\frac{8\sqrt{5}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{5}}{2*5}=\frac{0+16\sqrt{5}}{10} =\frac{16\sqrt{5}}{10} =\frac{8\sqrt{5}}{5} $

See similar equations:

| 3x+15°=x+25° | | x^2+(1.5x)^2-64=0 | | 1/n^2+n-1/1000=0 | | 9x+1/x=-5/7 | | x2-69x+270=0 | | x^2+1.5x^2-64=0 | | 1/n^2+n=1/1000 | | (6-3x)/4=5-x | | 4x-(25-x)=75 | | 18.971.167*x/100=3601 | | -4=2x2-3x | | 18.971.167(x/100)=3601 | | 4.9x^2+13x-1.7=0 | | 2x=5² | | 522=x+4x/25 | | 9x+8x=68-3x | | 5x+20÷3x+4=3 | | 7m-9=16 | | 12t-5t^2=12 | | 3c+9=2(12-c) | | 18x3=175 | | (x-10)(x+14)=(x+14)(x-12) | | m÷2=19 | | 3x+1+8x-24=360 | | (5^x)+5^(x-1)=6/5 | | 8x-7=7+3x | | x+7÷3=16 | | x÷3+7=16 | | m=-5|2m | | -0.2x^2+80x-1500=0 | | m=-52m | | 15=8h^2h |

Equations solver categories